매일신문

DGIST, 더욱 효율적인 빅데이터 처리 원천기술 개발

DGIST 정보통신융합전공 김민수 교수
DGIST 정보통신융합전공 김민수 교수

대구경북과학기술원에서 방대한 데이터를 더 효율적이고 더 빠르게 처리할 수 있는 원천 기술이 개발됐다. 빅데이터와 같이 커지는 데이터를 처리할 수 있는 효율적인 기술로써 향후 그 활용이 매우 기대된다.

DGIST는 21일 정보통신융합전공 김민수 교수(사진)팀이 관계형 데이터 처리기술인 'GPT(Graph-based Partitioning Table)기술'을 개발했다고 밝혔다. 최고의 처리속도를 자랑하는 기존의 처리방식보다도 평균 4배가량 더 우수한 처리 성능을 보여 향후 관련 분야에서 활용될 수 있을 것으로 전망된다.

현재 관계형 데이터를 분산 처리하는 가장 뛰어난 기술은 '아파치(Apache)'의 '스파크(Spark) SQL'로, 그 외에도 여러 처리 기술들이 많이 개발됐다.

하지만 이들 기술 모두 데이터 처리를 위해선 네트워크상에서 연결된 여러 대의 컴퓨터 사이의 많은 양의 네트워크 통신이 필요한 단점을 갖고 있다.

그동안 김민수 교수팀은 관계형 데이터를 여러 대의 컴퓨터들에 기존과 다른 방식으로 저장하고 처리하는 방식을 고민했다. 그 결과 컴퓨터 간의 네트워크 통신을 거의 발생시키지 않고도 데이터 분산 처리가 가능한 GPT 기술을 개발, 기존의 데이터 저장 및 처리 기술들이 갖던 문제의 근본적 해결에 성공했다.

이번에 개발된 김민수 교수팀의 GPT 기술은 업계 표준 벤치마크 방식인 'TPC-DS'를 이용한 데이터 처리성능 비교에서 아파치 스파크 SQL보다 평균 4.2배 더 빠른 처리속도를 보였다. 또한 단순한 이론적 단계를 넘어 실제 산업용 데이터 처리에 짧은 시일 내 상용화가 가능한 수준의 완성도까지 갖췄다.

김민수 교수는 "2010년대 초반, 빅데이터에 흥미를 갖고 시작한 연구가 방대한 양의 데이터를 처리하는 기술 연구로 이어지게 됐다"며 "이번 연구로 확보한 관계형 데이터 처리 기술은 향후 커지고 있는 데이터의 양과 그 복잡성을 고려해 볼 때 매우 유용하게 활용될 것으로 기대하고 있다"고 말했다.

이번 연구 결과는 DGIST 정보통신융합전공 남윤민 박사과정생이 제1저자로 참여했으며, 정보과학분야에서 권위 있는 국제학술지 '인포메이션 사이언스(Information Sciences)' 4월호에 게재됐다.

최신 기사

많이 본 뉴스

일간
주간
월간